

The Funding of Closed Defined Benefit Schemes

Adam Butt
Australian National University

- Motivation
- Methodology
- Results
- Conclusions and future research

- Future liabilities decreasing relative to past liabilities
- Liabilities decreasing in duration
- Benefit outflow greater than contribution inflow

- Investment strategy
- Contribution strategy
- Winding up the scheme

- Investigate the effect of different decisions on the future development of closed scheme contributions and funding levels
- Check if uncontrollable factors such as benefit design have an impact on the results

Go for Go o

- Stochastic model and simulations both financial and demographic factors stochastic
- Model scheme projected forward on an annual basis until wind up
- Annual actuarial valuations with contributions backdated to the valuation date
- Membership projected individually i.e.
 Bernoulli process applied to each individual in each year of projection

Go for Gold

19-22 April 2009 Sydney

Go for Go C

- Pays pension benefits to those who have membership greater than 5 years
- 9,000 members made up of 5,000 active members, 2,080 deferred members and 1,920 pensioner members
- Uses the PUC method to calculate liabilities and contributions – surpluses and deficits spread over 3 years
- Actuarial assumptions equal to the expectations from the stochastic models – discount rate equal to expected return on assets

- 100% funded at the commencement of projections
- Investment strategy (rebalanced each year):

Asset Class	Percentage
Australian Shares	35%
International Shares	25%
Australian Bonds	20%
International Bonds	15%
Cash	5%

Go for Go o

- Keeps surplus in the scheme at all times until wind up
- Wind up occurs when active membership drops below 50 - liabilities discharged by purchasing annuities valued at a discount rate 0.5% below the long-term interest rate
- Wind up liability increased by 2% to allow for the costs of wind up
- Any deficiency of assets to wind up liability made up by additional employer contributions

- Based on Wilkie (1995) a "cascade" structure
- Parameterised using annual data from 30
 June 1982 30 June 2008, period selected due to relatively similar economic conditions at the start and end dates

Go for GO C 19-22 April 2009 Sydney

^{*} Not calculated directly by the Wilkie model, but can be obtained indirectly via Australian equity dividends and dividend yield.

[^] Not part of the Wilkie structure but included in addition to the original structure.

GO FOR GO C 19-22 April 2009 Sydney

Factor	Average Return (p.a.)	Standard Deviation of Return (p.a.)	Annual Autocorrelation		
Price inflation	4.7%	2.8%	58%		
Salary inflation	5.7%	3.2%	51%		
Long-term interest rate	9.0%	2.7%	77%		
Australian Equities	13.6%	23.7%	1%		
International Equities	11.5%	29.2%	2%		
Australian Bonds	8.6%	7.6%	18%		
International Bonds	10.0%	6.4%	15%		
Cash	8.8%	3.0%	82%		
Scheme return (non-pension assets post-tax)	10.9%	13.1%	2%		

Go for Go o

- Withdrawal rates currently decrease with age and length of service
- Not currently linked to financial model ABS job ceasing statistics suggest overall withdrawal relatively steady over economic cycle because of negatively correlated voluntary and involuntary job leaving
- A full analysis of ABS micro-data to be done in future to identify withdrawal rate links to economy, age, service, salary, etc.

The decrement model - disability

 No separate disability benefit so disability rates not required – members who become disabled are assumed become deferred members

Go for Go o

- Based on ALT00-02 lower rates suggested by Knox and Nelson (2007) not used as pension cannot be commuted and disabled members still receive a pension
- Mortality improvement not allowed for computational reasons – uncertain future mortality allowed for through random shocks to ALT00-02 rates and underlying binomial variability

- Not linked to economy literature is inconclusive
- Not currently linked to salary or pension size literature suggests mortality rate is negatively correlated with income
- Future work to be done to quantify this effect and include in modelling

- Median and 95% Confidence Intervals contribution rate and funding level, these are calculated based on the appropriate percentiles of the 1,000 simulations for each projection year
- Contribution rate as a percentage of salaries additional 90% and 70% percentiles provided
- Funding level is assets divided by liabilities separate calculations for funding liability and wind-up liability
- Present value of employer contributions frequency plot of results for 1,000 simulations, contributions are discounted at the cash rate appropriate for that simulation

GO FOR GO C 19-22 April 2009 Sydney

Institute of Actuaries of Australia

Contributions — Base 90% and 70% lines

Funding — Base - Actuarial — Base - Wind-up

CI - Contribution Rate

CI - Funding Level

Present Value of Conts

Note – the figure in the plot is the average

GO FOR GO C 19-22 April 2009 Sydney

Institute of Actuaries of Australia

Contributions — BD2 — BD2 90% and 70% lines
— Base — Base 90% and 70% lines

Funding — BD2 - Actuarial — BD2 - Wind-up
— Base - Actuarial — Base - Wind-up

CI - Contribution Rate

CI - Funding Level

Go for Gold

19-22 April 2009 Sydney

Institute of Actuaries of Australia

Results – lump sum only (BD3)

Contributions — BD3

-- BD3 90% and 70% lines

— Base

-- Base 90% and 70% lines

Funding

BD3 - Actuarial

Base - Actuarial

CI - Contribution Rate

0 5 10 15 20 25 Year

Percentage of Salaries (%)

CI - Funding Level

Present Value of

Go for Gold

19-22 April 2009 Sydney

Institute of Actuaries of Australia

Results – more aggressive investment (IS1)

CI - Contribution Rate (IS1)

CI - Funding Level (IS1)

Present Value o

Go for Gold

19-22 April 2009 Sydney

Institute of Actuaries of Australia

Results – more defensive investment (IS2)

CI - Contribution Rate (IS2)

CI - Funding Level (IS2)

Present Value o

Go for Gold

19-22 April 2009 Sydney

Institute of Actuaries of Australia

Results – reduce investment risk as surplus increases (IS3)

CI - Contribution Rate (IS3)

CI - Funding Level (IS3)

Present Value (

Go for Gold

19-22 April 2009 Sydney

Institute of Actuaries of Australia

Results – aggregate funding (CS3)

Contributions — CS — CS 90% and 70% lines
— Base — Base 90% and 70% lines

Funding — CS - Actuarial — CS - Wind-up

---- Base - Actuarial ---- Base - Wind-up

CI - Contribution Rate (CS3)

CI - Funding Level (CS3)

Present Value c

•

Funding Level regressions

$$FLR = \beta_0 + \beta_1 i_{diff} + \beta_2 w_{diff} + \beta_3 q_{diff} + \beta_4 m_{diff} + \beta_5 r_{diff}$$
$$+ \beta_6 i_{chng} + \beta_7 FL_{diff} + \beta_8 I \times FL_{diff}^2 + \varepsilon$$

- FLR % change in funding level over the year
- i_{diff} actual investment return less discount rate
- *w_{diff}* actual less expected salary increases
- q_{diff} actual less expected pension increases
- m_{diff} actual less expected mortality rate
- r_{diff} actual less expected withdrawal rate (lump sums)
- i_{chng} % change in liability discount rate
- FL_{diff} funding level last year less 1
- I equal to one if FL_{diff} > 0 or zero otherwise
- FL²_{diff} (funding level last year less 1)²

Done in year 2 and year 21 to test differences

	Actuarial						Wind-up						
	t = 2			t = 21			t = 2			t = 21			
	Coef	S.E.	SS	Coef	S.E.	SS	Coef	S.E.	SS	Coef	S.E.	SS	
B_0	0.007	0.000	NA	0.038	0.001	NA	-0.108	0.009	NA	0.002	0.002	NA	
i _{deff}	0.914	0.002	0.922	0.970	0.007	0.926	1.036	0.011	0.357	0.930	0.015	0.428	
Wag	-0.305	0.016	0.002	0.009	0.042	0.000	-0.136	0.079	0.000	0.068	0.095	0.000	
$q_{\rm agg}$	-0.671	0.016	0.028	-0.870	0.045	0.034	-0.224	0.088	0.001	-0.135	0.113	0.000	
m_{diff}	1.009	0.263	0.000	0.635	0.329	0.000	1.694	1.323	0.000	0.478	0.728	0.000	
r_{ag}	0.115	0.147	0.000	NA	NA	NA	0.419	0.743	0.000	NA	NA	NA	
i_{chng}	NA	NA	NA	NA	NA	NA	1.030	0.010	0.602	0.603	0.009	0.478	
FL_{4gg}	-0.375	0.004	0.031	0.003	0.002	0.000	-0.127	0.018	0.004	0.035	0.004	0.007	
$FL^2_{_{4g}}$	0.927	0.016	0.014	0.002	0.001	0.004	NA	NA	NA	-0.004	0.002	0.000	
		Total	0.996		Total	0.964		Total	0.964		Total	0.914	

Coefficients in bold italics are insignificant at the 5% level.

Wind-up liability not relevant for lump sums so not included

	Lump Sum - BD3							Base						
	t = 2			t = 21			t = 2			t = 21				
	Coef	S.E.	SS	Coef	S.E.	SS	Coef	S.E.	SS	Coef	S.E.	SS		
B_0	0.004	0.000	NA	0.020	0.004	NA	0.007	0.000	NA	0.038	0.001	NA		
i _{agr}	0.940	0.001	0.898	1.030	0.012	0.838	0.914	0.002	0.922	0.970	0.007	0.926		
W_{ddf}	-0.993	0.008	0.046	-1.012	0.072	0.031	-0.305	0.016	0.002	0.009	0.042	0.000		
$q_{\mathcal{A}\mathcal{J}}$	0.015	0.009	0.000	0.176	0.077	0.000	-0.671	0.016	0.028	-0.870	0.045	0.034		
m_{dyf}	-1.278	0.220	0.000	-0.235	0.319	0.000	1.009	0.263	0.000	0.635	0.329	0.000		
r	0.015	0.028	0.000	0.274	0.064	0.001	0.115	0.147	0.000	NA	NA	NA		
i_{chmg}	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
FL_{agg}	-0.418	0.002	0.047	0.047	0.002	0.042	-0.375	0.004	0.031	0.003	0.002	0.000		
$FL^2_{_{\mathit{eff}}}$	0.711	0.009	800.0	-0.003	0.000	0.008	0.927	0.016	0.014	0.002	0.001	0.004		
		Total	0.999		Total	0.921		Total	0.996		Total	0.964		

- Surplus a significant problem for closed schemes – more of a problem for pensions
- Reducing investment risk reduces surplus but increases future contributions
- Reducing the speed at which deficits are removed may lead to a slight overall reduction in contributions
- Investment returns by far the most important factor in predicting funding level changes

- Effect of alternative investment models
- Cash flow matching
- Changes to timing of wind-up
- Use of scheme surplus
- Effect of government insurance